A Generating Series for Murakami-Ohtsuki-Yamada Graph Evaluations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Group-like Behaviour of the Le-murakami-ohtsuki Invariant

We study the effect of Feynman integration and diagrammatic differential operators on the structure of group-like elements in the algebra generated by coloured vertex-oriented uni-trivalent graphs. We provide applications of our results to the study of the LMO invariant, a quantum invariant of manifolds. We also indicate further situations in which our results apply and may prove useful. The en...

متن کامل

Generating Optimal Contiguous Evaluations for Expression DAGs

We consider the NP complete problem of generating contiguous evaluations for expression DAGs with a minimal number of registers We present two algorithms that generate optimal contiguous evaluation for a given DAG The rst is a modi cation of a complete search algorithm that omits the generation of redundant evaluations The second algorithm generates only the most promising evaluations by splitt...

متن کامل

a time-series analysis of the demand for life insurance in iran

با توجه به تجزیه و تحلیل داده ها ما دریافتیم که سطح درامد و تعداد نمایندگیها باتقاضای بیمه عمر رابطه مستقیم دارند و نرخ بهره و بار تکفل با تقاضای بیمه عمر رابطه عکس دارند

The Århus Integral of Rational Homology 3-spheres Iii: the Relation with the Le-murakami-ohtsuki Invariant

Continuing the work started in [Å-I] and [Å-II], we prove the relationship between the Århus integral and the invariant Ω (henceforth called LMO) defined by T.Q.T. Le, J. Murakami and T. Ohtsuki in [LMO]. The basic reason for the relationship is that both constructions afford an interpretation as “integrated holonomies”. In the case of the Århus integral, this interpretation was the basis for e...

متن کامل

Evaluations of Graph Polynomials

A graph polynomial p(G, X̄) can code numeric information about the underlying graph G in various ways: as its degree, as one of its specific coefficients or as evaluations at specific points X̄ = x̄0. In this paper we study the question how to prove that a given graph parameter, say ω(G), the size of the maximal clique of G, cannot be a fixed coefficient or the evaluation at any point of the Tutte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Vietnamica

سال: 2014

ISSN: 0251-4184,2315-4144

DOI: 10.1007/s40306-014-0081-0